Roll No.

333454(28)

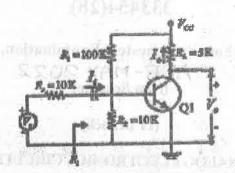
B. E. (Fourth Semester) Examination, 2020 APR-MAY 2022 (New Scheme)

(IT Branch)

ANALOG ELECTRONICS CIRCUITS

Time Allowed: Three hours

Maximum Marks: 80


Minimum Pass Marks: 28

Note: Answer all questions. Part (a) is compulsory and carries 2 marks. Answer any two parts from (b), (c) and (d) carries 7 marks.

Unit - I

1. (a) Explain how CE configuration is suitable for every/ any stage.

(b) Calculate A_i , R_i , A_v , R_0 , A_{vs} and A_{is} for the given circuit. Circuit parameters are $h_{ie} = 1.1 k$, $h_{re} = 2.5 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 2.5 \mu A/V$.

(c) Draw and explain emitter follower circuit and mention three characteristics of it. Derive the expression for current gain A_I, Input impedence R_I, voltage gain A_V output resistance R₀.

Salt a Harge Lands

(d) Give comparison between CE, CB and CC configuration with the help of h-parameter model.

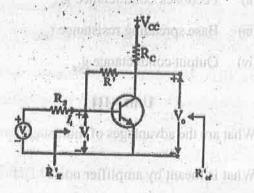
Unit a II

2. (a) Give any two reasons, why hybrid- π model is designed in high frequency region for a transistor.

(b) Consider a single stage CE transistor amplifier with the load resistor R_L shunted by a capacitance C_L . Prove that the internal voltage gain:

$$K = \frac{V_{Ce}}{V_b'e} = \frac{-g_m R_L}{1 + jw(C_C + C_L)R_L}$$

- (c) Derive the expression for the CE sort circuit current gain A₁ as a function of frequency,
- (d) For hybrid π model drive expression for the following (derive any two):
 - (i) Coductance g_{b'e}
 - (ii) Feedback conductance g_{b'c}
 - (iii) Base spreading resistance r_{bb},
 - (iv) Output conductance g_{ce}


Unit - III

- 3. (a) What are the advantages of multistage amplifier?
 - (b) What is meant by amplifier noise? Define white noise, johnson noise, short noise, noise figure, signal to noise ratio.

- (c) Compare with circuit diagram direct coupling, RC coupling and transformer coupling.
- (d) Explain the effect of cascading on bandwidth with the help of expression for higher and lower cutoff frequency.

Unit - IV

- 4. (a) What are the drawbacks of applying negative feedback in implifiers?
- (b) For the circuit shown take $R_c = 4$ K, R' = 40K, $R_s = 10$ K, $h_{je} = 1.1$ K, $h_{fe} = 50$ and $h_{re} = h_{oe} = 0$ Find (a) A_{vf} and R_{mf} (b) R_{if} and (c) R_{of}

(c) Drive the expression for input and output impedences of voltage shunt amplifier.

333454(28)

(d) Define negative feedback and positive feedback. What is the relationship between the transfer gain with feedback A_f and that without feedback A?

Unit - V

- 5. (a) Write one advantage and one diadvantages of positive feedback.
 - (b) Draw the basic circuit diagram of Hartley and Colpitts oscillator. Write an expression for oscillation frequency and also mention the minimum gain required for sustained oscillation.
 - (c) Draw the circuit diagram of Wien bridge oscillator.

 Derive an expression of requency of oscillation.
 - (d) What is the Barkhausen criteria for sustained oscillation. Explain crystal oscillator with proper diagram.